Computational intelligence sequential Monte Carlos for recursive Bayesian estimation

نویسنده

  • Muhammed Ayub Hanif
چکیده

Recursive Bayesian estimation using sequential Monte Carlos methods is a powerful numerical technique to understand latent dynamics of non-linear non-Gaussian dynamical systems. Classical sequential Monte Carlos suffer from weight degeneracy which is where the number of distinct particles collapse. Traditionally this is addressed by resampling, which effectively replaces high weight particles with many particles with high inter-particle correlation. Frequent resampling, however, leads to a lack of diversity amongst the particle set in a problem known as sample impoverishment. Traditional sequential Monte Carlo methods attempt to resolve this correlated problem however introduce further data processing issues leading to minimal to comparable performance improvements over the sequential Monte Carlo particle filter. A new method, the adaptive path particle filter, is proposed for recursive Bayesian estimation of non-linear non-Gaussian dynamical systems. Our method addresses the weight degeneracy and sample impoverishment problem by embedding a computational intelligence step of adaptive path switching between generations based on maximal likelihood as a fitness function. Preliminary tests on a scalar estimation problem with non-linear non-Gaussian dynamics and a non-stationary observation model and the traditional univariate stochastic volatility problem are presented. Building on these preliminary results, we evaluate our adaptive path particle filter on the stochastic volatility estimation problem. We calibrate the Heston stochastic volatility model employing a Markov chain Monte Carlo on six securities. Finally, we investigate the efficacy of sequential Monte Carlos for recursive Bayesian estimation of astrophysical time series. We posit latent dynamics for both regularized and irregular astrophysical time series, calibrating fifty-five quasar time series using the CAR(1) model. We find the adaptive path particle filter to statistically significantly outperform the standard sequential importance resampling particle filter, the Markov chain Monte Carlo particle filter and, upon Heston model estimation, the particle learning algorithm particle filter. In addition, from our quasar MCMC calibration we find the characteristic timescale τ to be first-order stable in contradiction to the literature though indicative of a unified underlying structure. We offer detailed analysis throughout, and conclude with a discussion and suggestions for future work.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Estimation of Unconstrained Nonlinear Dynamic Systems via Sequential Monte Carlo Sampling

Precise estimation of state variables and model parameters is essential for efficient process operation. Bayesian formulation of the estimation problem suggests a general solution for all types of systems. Even though the theory of Bayesian estimation of nonlinear dynamic systems has been available for four decades, practical implementation has not been feasible due to computational and methodo...

متن کامل

A Bayesian approach to multiscale inverse problems using the sequential Monte Carlo method

A new Bayesian computational approach is developed to estimate spatially varying parameters. The sparse grid collocation method is adopted to parameterize the spatial field. Based on a hierarchically structured sparse grid, a multiscale representation of the spatial field is constructed. An adaptive refinement strategy is then used for computing the spatially varying parameter. A sequential Mon...

متن کامل

Sequential Mcmc for Bayesian Model Selection

In this paper, we address the problem of sequential Bayesian model selection. This problem does not usually admit any closed-form analytical solution. We propose here an original sequential simulation-based method to solve the associated Bayesian computational problems. This method combines sequential importance sampling, a resampling procedure and reversible jump MCMC moves. We describe a gene...

متن کامل

State Estimation and Smoothing for the Probability Hypothesis Density Filter

Tracking multiple objects is a challenging problem for an automated system, with applications in many domains. Typically the system must be able to represent the posterior distribution of the state of the targets, using a recursive algorithm that takes information from noisy measurements. However, in many important cases the number of targets is also unknown, and has also to be estimated from d...

متن کامل

Bayesian Estimation by Sequential Monte Carlo Sampling for Nonlinear Dynamic Systems

Precise estimation of state variables and model parameters is essential for efficient process operation, including model predictive control, abnormal situation management, and decision making under uncertainty. Bayesian formulation of the estimation problem suggests a general solution for all types of systems. Even though the theory of Bayesian estimation of nonlinear dynamic systems has been a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013